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Abstract. Species distribution models (SDMs) are used to generate hypotheses regarding the potential

distributions of species under different environmental conditions, such as forecasts of species range shifts

in response to climate change and predictions of invasive species range expansions. However, an accurate

description of species’ geographic ranges as a function of the environment requires that species

observations and climatic variables are measured at the same spatial and temporal resolution, which is

usually not the case. Weather station data are interpolated and these resulting continuous data layers are

incorporated into SDMs, often without any uncertainty assessment. Here we quantify the effects of three

unrelated but complementary aspects of uncertainty in weather station interpolations on SDM

performance using MaxEnt. We examine the influence of topographic heterogeneity, interannual variability,

and distance to station on the over- and under-prediction of modeled North American bird distributions.

Our species observations are derived from presence-absence information for 20 bird species with well-

known distributions. These three metrics of uncertainty in interpolated weather station data have varying

contributions to over- and under-prediction errors in SDMs. Topographic heterogeneity had the highest

contribution to omission errors; the lowest contribution to commission errors was from Euclidean distance

to station. The results confirm the importance of establishing an appropriate relational basis in time and

space between species and climatic layers, providing key operational criteria for selection of species

observations fed into SDMs. Our findings highlight the importance of identifying weather stations

locations used in interpolated products, which will allow a characterization of some aspects of uncertainty

and identification of regions where users need to be particularly careful when making a decision based on a

SDM.
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INTRODUCTION

An attempt to understand species distribu-

tions, the fundamental unit of biogeography

(Angert 2009, Lomolino 2010), has stimulated

the development of tools to model the geo-

graphic distribution of organisms as a function

of environmental factors. These models are used

not only to understand distributions under

contemporary environmental conditions, but

also to predict whether or not a species might

find suitable habitat outside the boundaries of
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its current distribution (e.g., Vaclavik and
Meentemeyer 2012) and to investigate the
response of a species to projected future climates
or reconstructed paleo-climates (e.g., Fordham
et al. 2012, Stigall 2012). Species distribution
modeling, also known as ecological or environ-
mental niche modeling, has undergone an
exponential growth in popularity and applica-
tions in recent years (Elith and Leathwick 2009)
and is now a frequently used method in
multiple fields such as ecology, evolution,
conservation biology, epidemiology and agri-
culture.

As with any model, the output of species
distribution models (SDMs) is dependent on the
quality of data upon which they are built. Two
key sources of SDM input data include: (1)
species observations in nature, such as georefer-
enced point occurrences, and (2) environmental
variables, such as high-resolution gridded cli-
mate layers. Multiple correlations between envi-
ronmental parameters and known locations of
species occurrences are constructed using geo-
statistical algorithms, defining an n-dimensional
space that represents the climatic requirements of
a species. This inferred multidimensional space
can then be projected back into geographic space
to produce a map of the species’ potential
distribution. While the quality of species obser-
vations and their effect on SDMs have been
extensively documented (Soberon et al. 2000,
Graham et al. 2008, Hortal et al. 2008, Loiselle et
al. 2008, Fernández et al. 2009, Lobo et al. 2010,
Feeley and Silman 2011, Naimi et al. 2011), the
deficiencies and biases of environmental vari-
ables have seldom been considered (Peterson and
Nakazawa 2008, McInerny and Purves 2011,
Synes and Osborne 2011), despite the key role
they play in the process of building, evaluating
and calibrating SDMs.

SDM applications that project models to a
space or time other than that from which they
were created often use interpolations based on
weather station data (e.g., Gonzáles et al. 2010,
Fernández et al. 2012), in which the spatial
pattern of uncertainties is non-uniform and
highly variable (Johnson et al. 2000), and as
such, can lead to misinterpretation of spatial
and temporal accuracy by users (Beale and
Lennon 2012). Worldclim (Hijmans et al. 2005),
a gridded climatic dataset that consists of

monthly mean temperature and precipitation
values averaged over the 1950 to 1999 period at
1 km2 spatial resolution, is one example of an
interpolated dataset widely used in SDMs
where the degree of uncertainty associated with
individual cell values for a particular climatic
variable is influenced by three elements: (1)
spatial variability, (2) temporal variability, and
(3) the density of available observations (Zhang
and Goodchild 2002). The first two elements are
considered to be intrinsic characteristics of the
parameter to be estimated, while the last one is
considered to be a characteristic attributable to
the observation system. Although these three
unrelated but complementary elements repre-
sent the core of uncertainty characterization of
interpolations for weather station data, their
effect on SDM performance has not been
quantified.

Recent studies suggest that poor model
performance, in part, can be attributed to high
levels of uncertainty in the environmental data
(Kriticos and Leriche 2010, Beale and Lennon
2012, Kamino et al. 2012); however the relation-
ship between model omission and commission
errors and the degree of uncertainty in the
interpolated environmental input layers has not
yet been addressed in the literature. The aim of
this study is to determine whether SDM
performance can be directly attributed to any
of these three aspects of uncertainty. Explicitly
accounting for the underlying uncertainty in the
weather station interpolated data, we investi-
gate three hypotheses: (1) SDM omission and
commission errors are more often found in
regions with high levels of spatial variability,
(2) SDM performance is degraded by the
mismatch between the scale of climatic variabil-
ity used to create the model and the scale at
which species distributions respond, and (3)
SDM omission and commission errors are
expected to be higher in regions with relatively
low density of weather stations. These expecta-
tions are tested using a combination of high
quality species occurrence data and novel
gridded datasets that include estimates of
environmental uncertainty. Our results suggest
that biogeographers can benefit from increased
attention to the variability and uncertainty in
gridded spatial climate data when developing
and applying SDMs.
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METHODS

Species occurrence data
We selected a subset of twenty species of birds

from distribution data compiled by the North
American Bird Breeding Survey (BBS; Sauer et al.
2006). The BBS dataset is a well-vetted, standard-
ized, spatially balanced, long-term source of bird
species occurrences (Sauer et al. 2006). Important-
ly, it is a close approximation to a true presence-
absence, multi-species, observational dataset
available at a continental scale. From the full list,
twenty species were selected based on the criteria
that their breeding distributions are largely
determined by climate (Table 1), increasing the
likelihood their distributions can be reasonably
modeled using primarily climate variables.

For each species, observation data points
representing multi-year survey routes (Sauer et

al. 2003) were split into presence and absence. In
order to avoid a subjective decision in the
placement of the break between presence vs.
absence across all survey years, two complemen-
tary approaches were applied. First, species
observations in transect location maps were
plotted as histograms, supporting the detection
of naturally occurring breaks in the data.
Secondly, BBS range maps were compared to an
independent source of species range descriptions
(BirdLife International and Natureserve 2011).
Following Fernández et al. (2012), the indepen-
dent range maps were transformed into a raster
format that matched the BBS map’s spatial
resolution. The maps were compared using
ArcGIS Version 10 Spatial Analyst, looking for
the value in the classification of each BBS
continuous map that provided the highest value
of similarity among them. The two approaches

Table 1. Species list.

Species Distribution comments

Callipepla squamata� Range fluctuates in response to variability in winter rainfall (Giuliano and Lutz 1993).
Dendragapus obscurus� Prefers high lands in the winter. Occurs in pine and fir forest habitats from sea level to 3,600

m (Johnsgard 1988).
Tympanuchus cupido� Extirpated from much of the range in U.S. Native prairie is preferred, but also adapted to

cropland (Schroeder and Braun 1993).
Centrocercus urophasianus� Adapted to winter extremes. Distribution is reduced as a result of loss of sagebrush habitat.

Current distribution estimated at 56% of pre-settlement (Drut et al. 1994).
Columba fasciata Moves seasonally to areas higher or lower than normal range. Timing of breeding a factor of

food availability (Howell and Webb 1995).
Buteo regalis� Distribution and density closely associated with cycles of prey abundance (NatureServe 2012).
Picoides borealis� Cooperative breeder influenced by loss of habitat, requires .80 ha of continuous habitat.

Dependent of fire-maintained, old-growth pine forest (BirdLife 2012).
Picoides nuttallii� Endemic species to California and Baja California. Confined to oak woodlands (NatureServe

2012).
Picoides albolarvatus� Fire suppression and fragmentation has contributed to range decline in the northern part of

the distribution. Biology and ecology remains unstudied (IUCN 2012).
Melanerpes lewis� Strongly associated with fire-maintained old-growth ponderosa pine. Patchy distribution,

inconsistent from year-to-year (Saab and Dudley 1998).
Calypte anna� Moves to low elevations in the winter. The only hummingbird that spends the winter in

northern climates (Johnsgard 1983).
Selasphorus platycercus� Some individuals have moved into urban and suburban areas of southwestern due to

hummingbird feeders (Calder 1994).
Selasphorus sasin Apparent expansion in breeding range due to availability of non-native flowers (Johnsgard

1983).
Pyrocephalus rubinus� Northern populations move south in the winter. Can be found between 0 and 3,000 m in

elevation (NatureServe 2012).
Aphelocoma californica� Can be found in scrub-brush, boreal forests and temperate forests. Well adapted to suburban

areas (NatureServe 2012).
Calamospiza melanocorys� Arrives until late May to the northern edge of its range (NatureServe 2012).
Limnothlypis swainsonii Summer and winter distribution. One of the least observed of North American birds if it

weren’t for its loud song (BirdLife 2012).
Vermivora luciae� Incomplete information on breeding ecology. Arrives and departs early from breeding

grounds perhaps to evade much of the summer heat (BirdLife 2012).
Vermivora virginiae� Limited information on distribution and habitat preferences (NatureServe 2012).
Dendroica caerulescens� Male common in forest at lower to mid-elevations, female uses shrubbier habitat at higher

elevations. Mortality from exposure to cold or rainy weather (BirdLife 2012).

� Year round distribution.
� Winter and breeding distribution.
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agreed for all species. We therefore defined
presences as a survey route location point along
which a particular bird species had been record-
ed during at least one of the ten years that the
route was visited (1994 to 2003); routes without
at least one positive record were considered
absences.

Climatic gridded data
Nineteen climate layers, at a resolution of 1

km2, were obtained from Worldclim Version 1.4
(Hijmans et al. 2005). These variables, commonly
referred to as bioclimatic layers (Table 2),
represent biologically relevant aspects of temper-
ature and precipitation. This gridded climatic
dataset, which provides one of the finest spatial
resolutions relative to other similar products at a
global extent (e.g., Purvis et al. 2011, Roura-
Pascual et al. 2011, Zelazowski et al. 2011), was
chosen for multiple reasons. First, for North
America, Worldclim was generated from inter-
polated weather station data obtained from the
Global Historical Climatology Network (GHCN;
Vose et al. 1992), and the World-wide Agro-
climatic Database from the Food and Agriculture
Organization (FAOCLIM-2 2005), datasets to
which we also had access. Second, this climatic
dataset is available only as an averaged product

for the period of 1950 to 1999 and, therefore, does
not account for interannual climatic variability.
Third, Worldclim does not provide the user with
an assessment of the quality of the information or
uncertainty characterization in the data. Finally,
this climatic dataset has been cited 1,534 different
times since its publication (ISI 2012), and
constitutes a critical resource for studies in
diverse scientific fields including ecology, con-
servation, paleobiology, public health, anthropol-
ogy and developmental biology (e.g., Daszak et
al. 2012, de Oliveira et al. 2012, Kamilar et al.
2009, Levsen et al. 2012, Rosell et al. 2012).

Uncertainty layers
To test our three hypotheses, we generated

three gridded datasets that represent three
different aspects of uncertainty in interpolated
climatic data layers. The first dataset provided a
metric of spatial variability, a factor known to
contribute to biodiversity at the landscape level
(Kreft and Jetz 2007). Spatial variability was
quantified as topographic heterogeneity, mea-
sured by the number of unique elevation values
within 25 km2 of the target pixel derived from the
1 km2 spatial resolution Shuttle Radar Topo-
graphic Mission digital elevation model (SRTM-
DEM, Farr et al. 2007), using a Python script to

Table 2. List of variables used in the analysis.

Code Variable description Source

Bioclimatic layer Annual mean temperature (8C) 1
Bioclimatic layer Mean diurnal temp range (8C) 1
Bioclimatic layer Isothermality 1
Bioclimatic layer Temperature seasonality 1
Bioclimatic layer Max temperature of warmest month (8C) 1
Bioclimatic layer Min Temperature of coldest month (8C) 1
Bioclimatic layer Temperature annual range (8C) 1
Bioclimatic layer Mean temperature of wettest quarter (8C) 1
Bioclimatic layer Mean temperature of driest quarter (8C) 1
Bioclimatic layer Mean temperature of warmest quarter (8C) 1
Bioclimatic layer Mean temperature of coldest quarter (8C) 1
Bioclimatic layer Annual precipitation (mm) 1
Bioclimatic layer Precipitation of wettest month (mm) 1
Bioclimatic layer Precipitation of driest month (mm) 1
Bioclimatic layer Coefficient of variation for annual precipitation 1
Bioclimatic layer Precipitation of wettest quarter (mm) 1
Bioclimatic layer Precipitation of driest quarter (mm) 1
Bioclimatic layer Precipitation of warmest quarter (mm) 1
Bioclimatic layer Precipitation of coldest quarter (mm) 1
Uncertainty layer Topographic heterogeneity 2
Uncertainty layer Standard deviation from mean annual temperature 3
Uncertainty layer Coefficient of variation from annual total precipitation 3
Uncertainty layer Euclidean distance to closest temperature weather station 2, 4 & 5
Uncertainty layer Euclidean distance to closest precipitation weather station 2, 4 & 5

Note: Sources are 1, Worldclim; 2, SRTM; 3, ClimVar; 4, FAOCLIM-2; 5, GHCN.
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iterate ArcGIS Version 10 Zonal Statistics tool.
The second uncertainty dataset was an index

of temporal climate variation, ClimVar (Fernán-
dez et al. 2012), calculated for weather stations
that had a record of at least 30 years. This dataset
was chosen because it represents a fine resolution
spatial characterization of interannual climatic
variability, which represents the largest temporal
fluctuation in the climatic system, as compared to
daily, intraseasonal and interdecadal variability
(Ghil 2002). ClimVar is based on the same
combined sources of weather stations (Table 2)
used to create Worldclim. The specific ClimVar
layers used here are one standard deviation of
mean annual temperature and the coefficient of
variation of annual total precipitation.

The third dataset provided a measure of the
density of available information for interpolation.
This dataset was based on the 6,499 stations
recording monthly average temperature and
8,671 stations recording precipitation for the
continental United States, the same weather
station data used to produce ClimVar and
WorldClim. Using the SRTM-DEM as reference
for cell size, cell center position, and elevation
value, we calculated a new gridded layer where
each cell value reflected the combination of
vertical and horizontal distance (i.e., Euclidean
distance) from the center of the cell to the closest
temperature or precipitation weather station
(these were rarely equivalent). The Marine Geo-
spatial Ecology Tools Version 0.8a44 and the
Proximity Toolset in ArcGIS Version10 were used
to determine the closest weather station and
measure the distances as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2
q

ð1Þ

where x2 � x1 represents the longitudinal
distance between any point in the reference
shapefile (x1) and the nearest weather station
(x2), y2 � y1 represents the latitudinal distance
between any point in the reference shapefile (y1)
and the nearest weather station (y2), and z2 � z1
represents the difference in elevation from any
point in the reference shapefile (z1) and the
elevation at the nearest weather station (z2).

Species distribution modeling
Continuous SDMs were generated using Max-

Ent Version 3.3.3e (Phillips et al. 2006), a machine

learning algorithm that uses the principle of
maximum entropy to derive a set of rules
correlating environmental variables and species
occurrences to estimate the potential geographic
distribution of a target species. MaxEnt was
chosen because of its well established perfor-
mance relative to alternative niche modeling
techniques (Elith et al. 2006, Elith and Leathwick
2009, but see Li et al. 2011), and its capacity to
deal with multicollinearity in the environmental
variables, by considering redundant information
without penalizing models by overfitting (Phil-
lips et al. 2006, Phillips and Dudik 2008, Elith et
al. 2011).

In order to avoid spatial autocorrelation
(Peterson et al. 2011), all the localities that
included presences and absences for each
species were split into three subsets: 60% for
model training, 20% for threshold selection and
20% for model evaluation (Fig. 1) based on
spatially structured partitioning and random
selection of the data (modified from Daszak et
al. 2012). Only the presence portion of the 60%
subset was used to train each SDM. The first
20% subset, which included presences and
absences, was used to select the threshold value
applied to convert the continuous SDM output
into a binary map. A cutoff value that maximiz-
es sensitivity and specificity was computed
based on the area under the receiver operating
characteristic (ROC) curves (Fielding and Bell
1997) using SigmaPlot Version 11.0. The re-
maining 20% subset, which also included
presences and absences, was contrasted with
the resulting MaxEnt binary map using a
Python script to detect observations that were
over- or under-predicted by the model. This
process was repeated one hundred times, each
time randomly sampling with replacement a
new combination of 60–20–20. This analysis
produced two combined datasets that include
all of the localities that were identified as false
positives (commission errors) or false negatives
(omission errors) by at least one of the boot-
strapped SDMs for each species. These com-
bined datasets were then used as the reference
locations for which associated values of uncer-
tainty were extracted (Fig. 1), using the Geo-
spatial Modeling Environment Version 0.7.2
RC2 Isectpntrst tool (Beyer 2012).
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Fig. 1. Flowchart describing spatially structured partitioning of the data and sampling strategy. All localities

were randomly split into three subsets: 60% for model training, 20% for threshold selection and 20% for model

evaluation. The presence portion of the 60% subset was used to train a SDM. The first 20% subset was used to

select the threshold. Cutoff values that maximize sensitivity and specificity were computed based on the area

under the ROC curve. The second 20% subset was contrasted with the resulting MaxEnt output to detect

observations that were over- or under-predicted by the model. This process was repeated for each species to

produce 100 bootstrapped iterations. The results were two combined datasets that include all the localities that

were identified as false positives or false negatives by at least one of the bootstrapped SDMs for each species.

These datasets were then used as the reference locations for which associated values of uncertainty were

extracted.
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Data analysis
To understand the relationship between per-

formance errors in the SDMs and the three sets of
layers that represent different aspects of uncer-
tainty in the interpolated station data, we
compared the uncertainty values associated with
over- and under-predictions to a null distribution
using the two-sample Kolmogorov-Smirnov test
(K-S) with Stata Version 11.2. The two-sample K-
S test is commonly used to assess whether two
independent samples come from an identical
distribution, making no assumptions about the
normality of the data. The two-sample K-S
statistic D represents a measure of the maximum
difference between the cumulative distribution
functions for each sample (Conover 1999). For
each species’ withheld evaluation data, two
different sets of 100 localities were randomly
resampled with replacement (bootstrap, Efron
1982) 10,000 times. Using the two-sample K-S
test, their associated values of uncertainty were
compared to produce the underlying probability
density for D under the null distribution. From
this distribution the mean value, Dnull, was
calculated (Fig. 2a).

To compare the correctly predicted absences to
the incorrectly predicted absences (i.e., false
negatives), two subsets of 100 localities obtained
from the withheld evaluation data were contrast-
ed using the two-sample K-S test. The process
was bootstrapped 10,000 times to obtain the
underlying probability density for D, in the case
of the commission errors. From this distribution
the mean value, Dov, was calculated (Fig. 2b).

To compare the correctly predicted presences
to the incorrectly predicted presences (i.e., false
positives), two subsets of 100 localities obtained
from the withheld evaluation data were contrast-
ed using the two-sample K-S test. The process
was also bootstrapped 10,000 times to obtain the
underlying probability density for D, this time
for the omission errors. From this distribution the
mean value, Dun, was calculated (Fig. 2c).

For each distribution, the mean value calculat-
ed for the resulting bootstrapped parameter (i.e.,
Dov and Dun) was subtracted from the mean value
calculated from its corresponding null distribu-
tion (i.e., Dnull). The absolute magnitudes of the
differences were used to determine the strength
of the association between commission or omis-
sion errors and each of the uncertainty layers

Fig. 2. Normalized mean differences were obtained

by subtracting the average value of the 10,000

bootstrap null distribution (Dnull) for the Kolmogor-

ov-Smirnov test (D) from the mean value from the

distributions obtained by bootstrapping the over-

predicted (Xov) localities and the under-predicted

(Xun) localities for Vermivora luciae (shown) and for

all other species.
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(Fig. 2, Tables 3, 4 and 5). The same approach
was repeated for each uncertainty layer and each
species, totaling 200 comparisons. Finally, confi-
dence intervals were defined for D under the null
distribution, the commission errors, and the
omission errors, based on the percentile method
(Dixon 1993), where the intervals were calculated
and compared directly from the frequency
distributions of the bootstrapped statistics
(Q2.5% and Q97.5%) to define statistical signif-
icance.

RESULTS

The results of our analysis indicate that false
negatives and false positives, in that order, were
significantly (p , 0.05) associated (1) with
regions of high topographic heterogeneity for
95% and 50% of the species (Fig. 3a), (2) with
regions of high interannual precipitation vari-
ability for 75% and 70% of the species (Fig. 3b,
left panel) and with regions of high interannual
temperature variability for 70% and 55% of the
species (Fig. 3b, right panel), and (3) with regions
located further away from precipitation stations
for 95% and 20% of the species (Fig. 3c, left panel)
and with regions located further away from
temperature stations for 95% and 25% of the
species (Fig. 3c, right panel), when compared to

their corresponding null distributions.
The comparisons based on the precipitation

weather stations and those based on the temper-
ature stations for interannual variability were
weakly correlated (Fig. 4a). However, when an
outlier was not included in the regression, the
correlation for false negatives was stronger (r2 ¼
0.74; Fig. 4a, right panel, dotted line). Correla-
tions between precipitation and temperature for
Euclidean distance uncertainty were high for
both false positives (r2 ¼ 0.99; Fig. 4b, left panel)
and for false negatives (r2 ¼ 0.97; Fig. 4b, right
panel).

Among the three datasets characterizing un-
certainty in interpolated climatic layers, interan-
nual precipitation variability showed the highest
values associated with false positive errors in the
SDM, with a species average relative distance
(jDnull – Dovj) of 0.45 (where 0 represents no effect
and 1 represents the highest effect). Euclidean
distance to station showed the lowest species
average relative distance (jDnull – Dovj) of 0.26,
associated with false positive errors for both
temperature and precipitation based layers (Fig.
5). For SDM false negative errors, the dataset that
showed the highest associated value was topo-
graphic heterogeneity with a species average
relative distance (jDnull – Dunj) of 0.68; followed
by interannual variability with a species average

Table 3. Two-sample Kolmogorov-Smirnov test results for topographic heterogeneity

Species

Topographic heterogeneity

Overprediction Underprediction

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

A. californica 0.490 0.139 0.244 0.796 ... 0.873 0.129 0.535 1 *
B. regalis 0.553 0.161 0.256 0.898 ... 0.805 0.187 0.408 1 *
C. melanocorys 0.578 0.197 0.250 0.950 ... 0.450 0.146 0.229 0.816 ...
C. squamata 0.497 0.177 0.223 0.908 ... 0.795 0.197 0.371 1 *
C. anna 0.737 0.109 0.505 0.937 * 0.903 0.122 0.500 1 *
C. urophasianus 0.568 0.120 0.351 0.818 * 0.875 0.146 0.459 1 *
C. fasciata 0.681 0.108 0.462 0.884 * 0.866 0.152 0.459 1 *
D. obscurus 0.646 0.097 0.451 0.831 * 0.852 0.163 0.449 1 *
D. caerulescens 0.494 0.135 0.261 0.810 ... 0.778 0.204 0.375 1 *
L. swainsonii 0.517 0.181 0.242 0.949 ... 0.853 0.156 0.490 1 *
M. lewis 0.558 0.112 0.344 0.789 * 0.931 0.086 0.657 1 *
P. albolarvatus 0.727 0.110 0.496 0.915 * 0.896 0.134 0.480 1 *
P. borealis 0.579 0.173 0.274 0.939 ... 0.877 0.157 0.459 1 *
P. nuttallii 0.753 0.116 0.500 0.948 * 0.851 0.173 0.439 1 *
P. rubinus 0.312 0.114 0.152 0.599 ... 0.910 0.103 0.602 1 *
S. platycercus 0.552 0.120 0.330 0.798 * 0.881 0.127 0.510 1 *
S. sasin 0.772 0.137 0.472 0.990 * 0.937 0.063 0.776 1 *
T. cupido 0.497 0.137 0.250 0.787 ... 0.799 0.201 0.381 1 *
V. luciae 0.691 0.134 0.418 0.947 * 0.915 0.081 0.707 1 *
V. virginiae 0.454 0.118 0.222 0.696 ... 0.891 0.126 0.551 1 *
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relative distance (jDnull – Dunj) of 0.47 for the

temperature weather station based layer and 0.48

for the precipitation weather station based layer.

Euclidean distance showed the lowest species

average relative distance of (jDnull – Dunj) of 0.45,
associated with false negatives for both temper-

ature and precipitation based layers (Fig. 5).

DISCUSSION

Our goal was to determine the effects of three

different metrics of uncertainty associated with

climate data geo-processing on the performance

of species distribution models. Specifically, we

were interested in understanding the uncertainty

associated with weather station-based interpola-

tions and its effect on omission and commission

errors. We found evidence for the influence of all

three of the tested sources of uncertainty on SDM

performance: topographic heterogeneity, interan-

nual variability and distance to the closest

weather station.

Our results are consistent with each of our

expectations; however, there are some clear

differences in the degree of association between

each of the uncertainty layers we analyzed and

the observed errors of omission and commission.

We found that, among the three uncertainty

Table 4. Two-sample Kolmogorov-Smirnov test results for interannual variability.

Species Variable

Interannual variability

Overprediction Underprediction

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

A. californica Precip 0.660 0.129 0.379 0.914 * 0.676 0.197 0.316 1.000 *
Temp 0.560 0.115 0.330 0.772 * 0.685 0.199 0.323 0.990 *

B. regalis Precip 0.526 0.137 0.286 0.828 ... 0.615 0.190 0.296 0.990 *
Temp 0.390 0.140 0.179 0.726 ... 0.606 0.199 0.267 0.970 ...

C. melanocorys Precip 0.577 0.128 0.337 0.889 * 0.800 0.083 0.611 0.929 *
Temp 0.452 0.150 0.234 0.816 ... 0.613 0.123 0.390 0.888 *

C. squamata Precip 0.694 0.148 0.369 0.938 * 0.592 0.192 0.276 0.980 ...
Temp 0.544 0.150 0.260 0.854 ... 0.615 0.200 0.280 0.980 ...

C. anna Precip 0.790 0.167 0.417 0.990 * 0.610 0.176 0.296 0.990 *
Temp 0.689 0.138 0.394 0.959 * 0.653 0.199 0.296 0.990 *

C. urophasianus Precip 0.558 0.117 0.335 0.783 * 0.606 0.190 0.286 0.990 ...
Temp 0.377 0.123 0.178 0.641 ... 0.600 0.192 0.027 0.980 ...

C. fasciata Precip 0.584 0.146 0.293 0.882 * 0.585 0.189 0.278 0.980 ...
Temp 0.591 0.093 0.392 0.756 * 0.607 0.203 0.275 0.990 ...

D. obscurus Precip 0.448 0.129 0.220 0.720 ... 0.603 0.191 0.285 0.990 ...
Temp 0.342 0.105 0.167 0.572 ... 0.609 0.196 0.276 0.990 ...

D. caerulescens Precip 0.653 0.134 0.388 0.884 * 0.691 0.184 0.327 1.000 *
Temp 0.519 0.102 0.337 0.732 * 0.657 0.188 0.316 0.990 *

L. swainsonii Precip 0.499 0.160 0.248 0.818 ... 0.645 0.178 0.316 0.990 *
Temp 0.734 0.109 0.459 0.929 * 0.700 0.194 0.316 0.990 *

M. lewis Precip 0.569 0.131 0.302 0.825 * 0.608 0.191 0.286 0.990 ...
Temp 0.390 0.112 0.195 0.625 ... 0.627 0.204 0.281 0.990 ...

P. albolarvatus Precip 0.609 0.146 0.337 0.919 * 0.622 0.180 0.299 0.990 *
Temp 0.569 0.111 0.333 0.763 * 0.650 0.195 0.302 0.990 *

P. borealis Precip 0.433 0.109 0.265 0.684 ... 0.613 0.182 0.298 0.990 *
Temp 0.788 0.121 0.480 0.949 * 0.644 0.195 0.295 0.990 *

P. nuttallii Precip 0.859 0.117 0.574 1.000 * 0.603 0.177 0.299 0.990 *
Temp 0.663 0.118 0.389 0.889 * 0.634 0.190 0.296 0.980 *

P. rubinus Precip 0.578 0.150 0.289 0.902 ... 0.699 0.190 0.337 1.000 *
Temp 0.771 0.065 0.642 0.902 * 0.723 0.198 0.344 0.990 *

S. platycercus Precip 0.611 0.125 0.359 0.853 * 0.626 0.193 0.296 0.990 *
Temp 0.442 0.125 0.211 0.691 ... 0.634 0.201 0.292 0.990 *

S. sasin Precip 0.836 0.166 0.454 1.000 * 0.656 0.193 0.316 1.000 *
Temp 0.759 0.146 0.378 0.970 * 0.674 0.200 0.313 0.990 *

T. cupido Precip 0.394 0.127 0.202 0.705 ... 0.612 0.181 0.296 0.990 *
Temp 0.412 0.093 0.266 0.625 ... 0.629 0.189 0.292 0.990 *

V. luciae Precip 0.878 0.121 0.542 1.000 * 0.715 0.202 0.337 1.000 *
Temp 0.739 0.144 0.408 0.960 * 0.709 0.201 0.323 0.990 *

V. virginiae Precip 0.706 0.084 0.533 0.862 * 0.667 0.181 0.333 0.990 *
Temp 0.386 0.118 0.178 0.628 ... 0.683 0.195 0.326 0.990 *
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components, the highest degree of association

occurred between false negative errors and

topographic heterogeneity (Fig. 5), indicating

that in areas of high topographic heterogeneity,

SDMs are more likely to under-predict than over-

predict a species’distribution. This finding can be

explained by how the models classify a particular

pixel as species presence vs. absence. For

example, if an area situated in the Great Plains

in Kansas, where climatic layers have relatively

low spatial variability, is compared to a second

area located on the Eastern slope of the Andes

where variables change abruptly over relatively

short distances, errors will diverge. In the first

example the model will tend to over-predict

because the climatic similarity from one pixel to

the next is high and decreases slowly, making it

easier for the model to fit a curve that explains

the relationship between observations and the

environmental layers. In the second example, the

climatic similarity from one pixel to the next has

the potential to change dramatically, thus making

it harder for the model to fit a curve that explains

the complexity in the environmental layer with-

out raising the degree of the polynomial approx-

imation. In this case, the model choice will be the

most parsimonious solution, which results in an

under-prediction. These results suggest that a

Table 5. Two-sample Kolmogorov-Smirnov test results for Euclidean distance.

Species Variable

Euclidean distance

Overprediction Underprediction

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

Mean Obs.
Coef.

Boot.
SE

Q
(2.5%)

Q
(97.5%)

Sig.
0.05

A. californica Precip 0.339 0.109 0.176 0.594 ... 0.937 0.191 0.430 1.000 *
Temp 0.341 0.108 0.178 0.592 ... 0.841 0.187 0.438 1.000 *

B. regalis Precip 0.362 0.129 0.180 0.677 ... 0.863 0.187 0.459 1.000 *
Temp 0.361 0.130 0.184 0.680 ... 0.833 0.199 0.418 1.000 *

C. melanocorys Precip 0.456 0.171 0.212 0.889 ... 0.455 0.156 0.216 0.798 ...
Temp 0.452 0.170 0.255 0.859 ... 0.441 0.147 0.217 0.773 ...

C. squamata Precip 0.429 0.165 0.200 0.888 ... 0.946 0.117 0.546 1.000 *
Temp 0.426 0.165 0.200 0.857 ... 0.952 0.106 0.592 1.000 *

C. anna Precip 0.444 0.153 0.212 0.814 ... 0.963 0.105 0.576 1.000 *
Temp 0.439 0.152 0.211 0.808 ... 0.951 0.119 0.525 1.000 *

C. urophasianus Precip 0.298 0.099 0.152 0.532 ... 0.947 0.107 0.566 1.000 *
Temp 0.300 0.099 0.150 0.527 ... 0.919 0.129 0.515 1.000 *

C. fasciata Precip 0.347 0.115 0.168 0.602 ... 0.912 0.147 0.512 1.000 *
Temp 0.356 0.117 0.170 0.613 ... 0.901 0.156 0.500 1.000 *

D. obscurus Precip 0.298 0.096 0.147 0.515 ... 0.827 0.199 0.423 1.000 *
Temp 0.300 0.095 0.149 0.513 ... 0.834 0.194 0.429 1.000 *

D. caerulescens Precip 0.594 0.123 0.362 0.857 * 0.792 0.216 0.378 1.000 *
Temp 0.602 0.125 0.365 0.866 * 0.808 0.212 0.418 1.000 *

L. swainsonii Precip 0.641 0.164 0.333 0.960 * 0.838 0.201 0.490 1.000 *
Temp 0.638 0.163 0.326 0.948 * 0.854 0.198 0.500 1.000 *

M. lewis Precip 0.291 0.091 0.152 0.505 ... 0.957 0.099 0.606 1.000 *
Temp 0.293 0.091 0.153 0.502 ... 0.930 0.128 0.531 1.000 *

P. albolarvatus Precip 0.402 0.127 0.202 0.691 ... 0.991 0.043 0.898 1.000 *
Temp 0.389 0.126 0.189 0.674 ... 0.951 0.117 0.531 1.000 *

P. borealis Precip 0.617 0.147 0.333 0.899 * 0.969 0.097 0.586 1.000 *
Temp 0.609 0.152 0.330 0.908 * 0.972 0.088 0.667 1.000 *

P. nuttallii Precip 0.479 0.158 0.232 0.857 ... 0.983 0.060 0.776 1.000 *
Temp 0.476 0.156 0.237 0.838 ... 0.969 0.086 0.667 1.000 *

P. rubinus Precip 0.423 0.130 0.197 0.695 ... 0.913 0.162 0.500 1.000 *
Temp 0.408 0.126 0.190 0.677 ... 0.921 0.155 0.500 1.000 *

S. platycercus Precip 0.300 0.098 0.150 0.526 ... 0.895 0.171 0.500 1.000 *
Temp 0.308 0.100 0.158 0.537 ... 0.863 0.187 0.485 1.000 *

S. sasin Precip 0.562 0.189 0.260 1.000 ... 0.960 0.102 0.592 1.000 *
Temp 0.563 0.175 0.296 1.000 * 0.971 0.080 0.667 1.000 *

T. cupido Precip 0.584 0.127 0.333 0.837 * 0.871 0.192 0.480 1.000 *
Temp 0.580 0.127 0.333 0.837 * 0.889 0.184 0.490 1.000 *

V. luciae Precip 0.462 0.157 0.227 0.869 ... 0.894 0.159 0.500 1.000 *
Temp 0.463 0.156 0.233 0.847 ... 0.936 0.111 0.586 1.000 *

V. virginiae Precip 0.274 0.088 0.142 0.479 ... 0.858 0.193 0.480 1.000 *
Temp 0.280 0.089 0.143 0.484 ... 0.873 0.187 0.500 1.000 *
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FERNÁNDEZ ET AL.



Fig. 3. Species-specific normalized mean differences for each uncertainty layer. False positives are marked with

circles and false negatives are marked with triangles. Statistically significant values are shown with filled

markers.
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model of a species that is distributed in areas of
high topographic heterogeneity will have lower
performance than one of a species that comes
from areas of relatively low topographic hetero-
geneity, and that poor performance is more likely
to result in under-prediction of the species’ actual
range.

The second largest degree of association was
between interannual climatic variability and false
negatives (Fig. 5), which highlights the impor-
tance of establishing the appropriate temporal
relationships between species observations and

environmental layers as a step towards improv-
ing model performance. The processes that
condition a species distribution operate at differ-
ent spatial and temporal scales (e.g., Wiens 1989).
Here we use interannual climatic variability, a
metric that is highly synchronized with ecolog-
ical processes that affect the distribution of the
taxa under study. However, for some species this
strategy can have implications that influence the
interpretation of our results. For example, artifi-
cially influenced resource availability (e.g., bird
feeders) can provide inaccurate cues regarding

Fig. 4. Comparison of temperature and precipitation results based on the species-specific normalized mean

differences (jDnull – Dunj and jDnull – Dovj) for interannual variability and Euclidean distance. Note that for

Euclidean distance the results have a high degree of similarity between temperature-derived and precipitation-

derived uncertainty layers.
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habitat quality (Robb et al. 2008), causing a
temporal and/or spatial mismatch between the
species and the natural availability of the
resource. Also, natural climatic oscillations occur
at multiple temporal scales, and organisms are
adapted to cope with this variability at some
scales better than others. For example, plants in
xeric environments are well adapted to high
variability in temperature at short time scales
(i.e., diurnal), while a change in the pattern of
interannual precipitation for the same system can
have profound impacts on levels of physiological
stress (Freas and Kemp 1983). To directly
incorporate the effect of natural climatic variabil-
ity on SDMs requires a direct connection between
each particular species observation and the year
when the observation was made. This is not
always possible due to the lack of high-resolution
gridded time series climate data for most of the
world. When time-series climatic data is not
available, we recommend that model confidence
should be based on the life cycles of the taxa
under scrutiny. For example, perennial plant
species or animal species that do not migrate
might be less sensitive to interannual variability
than annual or migratory species.

The assumption that climatic similarity be-

tween two points in space is a function of the
distance between them does not hold under
every circumstance. Climatic similarity between
two points will also depend on their difference in
elevation; the Euclidean distance metric we used
here integrates both vertical and horizontal
distance to capture the effect on SDM perfor-
mance of relative weather station density in
topographically similar areas. Our results for this
distance-based analysis show a clear difference in
how omission vs. commission errors respond
(Fig. 5). As an example, we can compare India,
with a robust network of highly dense precipi-
tation weather stations (0.001 stations/km2) re-
cording over many decades, to its neighbor
Myanmar, where the density of weather stations
(0.00002 stations/km2) is two orders of magni-
tude less. The Euclidean distance alone is not
enough to characterize the uncertainty in the
interpolations of climatic parameters in both
countries. It is also critical to know where these
weather stations are located in relationship to the
underlying environmental variability. Regions in
the north of India will require a considerably
larger number of weather stations to accurately
characterize local precipitation patterns due to
their high topographic heterogeneity. Conversely,

Fig. 5. Results for normalized mean differences averaged across all species. Averaged values corresponding to

false positives (commission errors) are shown in black and averaged values corresponding to false negatives

(omission errors) are shown in grey. Note that results for interannual variability and Euclidean distance have two

results, the first corresponding to precipitation and the second one corresponding to temperature.
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South Myanmar may be climatically well char-
acterized by the current density of weather
stations. We advocate for the inclusion and
sharing of weather station locations used to
build interpolated climatic products. Open access
to this information will allow users to develop
their own uncertainty metrics, and to identify
regions where they need to be particularly
careful when interpreting the results of SDMs.

Our results are based on the assumption that
the spatial distributions of the twenty bird
species we analyze here are mainly determined
by climate. However, for any taxon, it is unlikely
that climatic variables alone will shape their
realized distribution. Although examining
whether climate determines these species’ ranges
is not the goal of this study, we acknowledge that
non-climatic factors can also be responsible for a
false positive or a false negative. Alternative
factors responsible for absence data predicted as
presence are not simple (see Lobo et al. 2010);
and possibilities can be grouped into two
categories: (1) species related factors (e.g., locality
climatically favorable but dispersal barriers
prevent occurrence, interspecific interactions,
local extinctions, or limited resources), and (2)
extrinsic factors (e.g., incomplete surveys and
biased information). Because we chose to work
with a multiyear observational dataset, our
results should be less affected by these extrinsic
factors, leaving species-related issues potentially
contributing to errors. In the case of presence
data predicted as absence, our analysis suggests
that the underlying climatic data is not only
unsuitable, but also incorrectly characterized by
the interpolation due to high uncertainty. How-
ever, the underlying climate may be unsuitable
and correctly characterized by the interpolation,
requiring alternative explanations for why the
observation was recorded as a presence. Such a
result could be attributed to source-sink dynam-
ics, transient occupancy observed by chance, or
even artificial food availability. This will not
change the implicit SDM assumption that docu-
mented species observations always represent
suitable habitat. In other words, the MaxEnt
algorithm assumes that a species will always
choose the appropriate habitat. However, it is
possible for an individual of a species to err in
selecting climatically suitable habitat. For exam-
ple, juvenile birds will have less experience in

choosing locations for a nesting site; also, late
arrivers will have fewer options in site selection.
These outliers under normal circumstances will
also have a lower chance of successfully breeding
(Martin and Roper 1988). Indeed, part of the
process of natural selection is individuals making
mistakes in the selection of suitable habitat.
These ecological mistakes, essential in the process
of evolution and currently overlooked by SDM
practice, have the potential to be applied to our
understanding of how a species will respond to
climate change.

The reasons behind our choice of taxonomic
group to test our hypotheses were mainly based
on species occurrence data quality and availabil-
ity, which also limits inference and application to
other taxonomic groups. Yet we believe that the
same principles and mechanisms explored here
apply also to other organisms, and that the
results can be cautiously extrapolated to other
taxonomic groups. However, underlying quality
and accuracy of the gridded information used as
environmental layers should not be the only
direction to look for sources of over- and under-
prediction errors and ways to improve the
models. Coastal redwood (Sequoia sempervirens),
as an example of a relict plant species, has its
suitable bioclimatic envelope restricted to a
narrow 50 km belt in the coast of California.
However, some parts of its actual current
distribution may be better explained by factors
of land use change rather than climate (Pyke
2004).

Attributing the omission and commission
errors in areas that were predicted by the model
as presence due to climate alone will be incorrect.
A simple yet difficult-to-achieve recommenda-
tion for resource managers applying the results
of SDMs is to asses all the potential sources of
uncertainty and to focus on characterization of
the sources that provide the largest amount of
error. However, integrated tools to aid resource
managers in evaluating multiple sources uncer-
tainty, while needed, are not yet available.

Finally, a useful SDM is not only precise, but
also accurate. While past literature that deals
with SDM environmental layer uncertainty fo-
cuses on model precision (e.g., Kriticos and
Leriche 2010) here we ask how divergent results
can be between known and modeled distribu-
tions if a parameter is uncertain. We quantified
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the relationship between omission and commis-
sion errors in the predictions and the degree of
uncertainty in the interpolated environmental
input layers. We attribute decrease in SDM
performance to the three aspects of uncertainty
evaluated here; however, not all of them were
identified as equally important sources of over-
and under-prediction errors in SDMs. Our results
confirm the importance of establishing appropri-
ate relationships in time and space between
species and environmental layers. Uncertainty
characterizations for environmental layers can
provide operational criteria for the selection of
species observations fed into SDMs, and help
identify conditions where users can weigh their
degree of confidence when making decisions
based on a SDM.
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